Deep Learning + Student Modeling + Clustering: a Recipe for Effective Automatic Short Answer Grading
نویسندگان
چکیده
In this work we tackled the task of Automatic Short Answer Grading (ASAG). While conventional ASAG research makes prediction mainly based on student answers referred as Answer-based, we leveraged the information about questions and student models into consideration. More specifically, we explore the Answer-based, Question, and Student models individually, and subsequently in various combined and composite models through feature engineering. Additionally, we extend the exploration of machine learning methods by utilizing Deep Belief Networks (DBN) together with other five classic classifiers. Our experimental results show that our proposed feature engineering models significantly out-performed the conventional Answer-based model and among the six machine learning classifiers, DBN is the best followed by SVM, and Naive Bayes is the worst.
منابع مشابه
Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملAutomatic Grading of Short Answers for MOOC via Semi-supervised Document Clustering
Developing an effective and impartial grading system for short answers is a challenging problem in educational measurement and assessment, due to the diversity of answers and the subjectivity of graders. In this paper, we design an automatic grading approach for short answers, based on the non-negative semi-supervised document clustering method. After assigning several answer keys, our approach...
متن کاملText-to-Text Semantic Similarity for Automatic Short Answer Grading
In this paper, we explore unsupervised techniques for the task of automatic short answer grading. We compare a number of knowledge-based and corpus-based measures of text similarity, evaluate the effect of domain and size on the corpus-based measures, and also introduce a novel technique to improve the performance of the system by integrating automatic feedback from the student answers. Overall...
متن کاملAn Iterative Transfer Learning Based Ensemble Technique for Automatic Short Answer Grading
Automatic short answer grading (ASAG) techniques are designed to automatically assess short answers to questions in natural language, having a length of a few words to a few sentences. Supervised ASAG techniques have been demonstrated to be effective but suffer from a couple of key practical limitations. They are greatly reliant on instructor provided model answers and need labeled training dat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016